索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]胡江峰 蔡晓波 陆伦根.脂肪组织在脂肪性肝病发生发展中的作用[J].国际消化病杂志,2019,03:153-156,161.
点击复制

脂肪组织在脂肪性肝病发生发展中的作用(PDF)

《国际消化病杂志》[ISSN:1673-534X/CN:31-1953/R]

期数:
2019年03期
页码:
153-156,161
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
-
作者:
胡江峰 蔡晓波 陆伦根
200080 上海交通大学附属第一人民医院消化科
Author(s):
-
关键词:
脂肪组织 脂肪性肝病 非酒精性脂肪性肝病
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-534X.2019.03.003
文献标识码:
-
摘要:
肥胖和饮酒容易导致脂肪性肝病,两者均可引起脂肪组织发生改变,主要的改变包括脂肪组织炎性反应、胰岛素抵抗、瘦素等细胞因子异常分泌以及免疫细胞浸润等。脂肪组织和肝脏通过多种途径相互作用,共同参与脂肪性肝病的发生、发展。减肥或使用药物减轻脂肪组织炎性反应均可改善肝脏损伤,提示针对脂肪组织的干预对治疗脂肪性肝病有着重要的作用。该文对脂肪组织在脂肪性肝病发生、发展中的作用作一综述。
Abstract:
-

参考文献/References

1 De Roza MA, Goh GB. The increasing clinical burden of NAFLD in Asia[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 333-334.
2 Girousse A, Gil-Ortega M, Bourlier V, et al. The release of adipose stromal cells from subcutaneous adipose tissue regulates ectopic intramuscular adipocyte deposition[J]. Cell Rep, 2019, 27(2): 323-333.
3 Alcala M, Calderon-Dominguez M, Serra D, et al. Mechanisms of impaired brown adipose tissue recruitment in obesity[J]. Front Physiol, 2019, 10: 94.
4 Flouris AD, Dinas PC, Valente A, et al. Exercise-induced effects on UCP1 expression in classical brown adipose tissue: a systematic review[J]. Horm Mol Biol Clin Investig, 2017, 31(2). pii: /j/hmbci.2017.31.issue-2/hmbci-2016-0048/hmbci-2016-0048.xml.
5 Bartelt A, Heeren J. Adipose tissue browning and metabolic health[J]. Nat Rev Endocrinol, 2014, 10(1): 24-36.
6 Suiter C, Singha SK, Khalili R, et al. Free fatty acids: circulating contributors of metabolic syndrome[J]. Cardiovasc Hematol Agents Med Chem, 2019, 16(1): 20-34.
7 Frühbeck G, Catalán V, Rodríguez A, et al. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation[J]. Nutrients, 2019, 11(2). pii: E454.
8 Vossmerbaeumer U, Ohnesorge S, Kuehl S, et al. Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells[J]. Cytotherapy, 2009, 11(2): 177-188.
9 Gaddipati R, Sasikala M, Padaki N, et al. Visceral adipose tissue visfatin in nonalcoholic fatty liver disease[J]. Ann Hepatol, 2010, 9(3): 266-270.
10 Stojanovic’ O, Kieser S, Trajkovski M, et al. Common traits between the beige fat-inducing stimuli[J]. Curr Opin Cell Biol, 2018, 55: 67-73.
11 Reitman ML. How does fat transition from white to beige?[J]. Cell Metab, 2017, 26(1): 14-16.
12 Mancini MC, de Melo ME. The burden of obesity in the current world and the new treatments available: focus on liraglutide 3.0 mg[J]. Diabetol Metab Syndr, 2017, 9: 44.
13 Ramachandran A, Chamukuttan S, Shetty SA, et al. Obesity in Asia--is it different from rest of the world[J]. Diabetes Metab Res Rev, 2012, 28(Suppl 2): 47-51.
14 Mirza MS. Obesity, visceral fat, and NAFLD: Querying the role of adipokines in the progression of nonalcoholic fatty liver disease[J]. ISRN Gastroenterol, 2011, 2011: 592404.
15 Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation[J]. Nat Rev Endocrinol, 2017,13(11): 633-643.
16 Maury E, Ehala-Aleksejev K, Guiot Y, et al. Adipokines oversecreted by omental adipose tissue in human obesity[J]. Am J Physiol Endocrinol Metab, 2007, 293(3): E656-E665.
17 Couillard C, Mauriege P, Imbeault P, et al. Despres, hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia[J]. Int J Obes Relat Metab Disord, 2000, 24(6): 782-788.
18 Polyzos SA, Aronis KN, Kountouras J, et al. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis[J]. Diabetologia, 2016, 59(1): 30-43.
19 Jarrar MH, Baranova A, Collantes R, et al. Adipokines and cytokines in non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2008, 27(5): 412-421.
20 Tasci I, Dogru T, Ercin CN, et al. Adipokines and cytokines in non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2008, 28(2): 266-268.
21 Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose tissue as an endocrine organ[J]. Subcell Biochem, 2007, 42: 63-91.
22 van den Berg SM, van Dam AD, Rensen PC, et al. Immune modulation of brown(ing)adipose tissue in obesity[J]. Endocr Rev, 2017, 38(1): 46-68.
23 Mahlak?iv T, Flamar AL, Johnston LK, et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33[J]. Sci Immunol, 2019, 4(35). pii: eaax0416.
24 Vonghia L, Francque S. Cross talk of the immune system in the adipose tissue and the liver in non-alcoholic steatohepatitis: Pathology and beyond[J]. World J Hepatol, 2015, 7(15): 1905-1912.
25 Rajakrishnan V, Jayadeep A, Arun OS, et al. Changes in the prostaglandin levels in alcohol toxicity: effect of curcumin and n-acetylcysteine[J]. J Nutr Biochem, 2015, 11(10): 509-514.
26 Syn WK, Choi SS, Diehl AM, et al. Apoptosis and cytokines in non-alcoholic steatohepatitis[J]. Clin Liver Dism, 2009, 13(4): 565-580.
27 Huttunen P, Kortelainen ML. Long-term alcohol consumption and brown adipose tissue in man[J]. Eur J Appl Physiol Occup Physiol, 1990, 60(6): 418-424.
28 Huttunen P, Kortelainen ML. Chronic alcohol intake induces the oxidative capacity of brown adipose tissue in the rat[J]. Pharmacol Biochem Behav, 1988, 29(1): 53-57.
29 Procaccini C, Galgani M, De Rosa V, et al. Leptin: the prototypic adipocytokine and its role in NAFLD[J]. Curr Pharm Des, 2010, 16(17): 1902-1912.
30 Angulo P, Alba LM, Petrovic LM, et al. Leptin, insulin resistance, and liver fibrosis in human nonalcoholic fatty liver disease[J]. J Hepatol, 2004, 41(6): 943-949.
31 Laufer EM, Hartman TJ, Baer DJ, et al. Effects of moderate alcohol consumption on folate and vitamin B(12)status in postmenopausal women[J]. Eur J Clin Nutr, 2004, 58(11): 1518-1524.
32 Wang JJ, Tung TH, Yin WH, et al. Effects of moderate alcohol consumption on inflammatory biomarkers[J]. Acta Cardiol, 2008, 63(1): 65-72.
33 Clària J, González-Périz A, López-Vicario C, et al. New insights into the role of macrophages in adipose tissue inflammation and fatty liver disease: modulation by endogenous omega-3 Fatty acid-derived lipid mediators[J]. Front Immunol, 2011, 2: 49.
34 Halberg N, Khan T, Trujillo ME, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue[J]. Mol Cell Biol, 2009, 29(16): 4467-4483.
35 Tilg H, Moschen AR. Insulin resistance, inflammation, and non-alcoholic fatty liver disease[J]. Trends Endocrinol Metab, 2008, 19(10): 371-379.
36 Matsumoto M, Ogawa W, Akimoto K, et al. PKClambda in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity[J]. J Clin Invest, 2003, 112(6): 935-944.
37 Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance[J]. Int J Obes Relat Metab Disord, 2003, 27(Suppl 3): S49-S52.
38 Kiguchi N, Maeda T, Kobayashi Y, et al. Leptin enhances cc-chemokine ligand expression in cultured murine macrophage[J]. Biochem Biophys Res Commun, 2009, 384(3): 311-315.
39 Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy[J]. J Hepatol, 2016, 64(6): 1403-1415.
40 Ehling J, Bartneck M, Wei X, et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis[J]. Gut, 2014, 63(12): 1960-1971.
41 Li B, Lei SS, Su J, et al. Alcohol induces more severe fatty diver disease by influencing cholesterol metabolism[J]. Evid Based Complement Alternat Med, 2019: 7095684.
42 Cuesta A, Haseeb S, Aquistapache F, et al. Alcohol consumption and cardiovascular health: A nationwide survey of Uruguayan cardiologists[J]. Alcohol, 2019. pii: S0741-8329(18)30272-6.

备注/Memo

备注/Memo:
作者单位: 200080 上海交通大学附属第一人民医院消化科
通信作者: 陆伦根,Email: lungenlu1965@163.com
更新日期/Last Update: 2019-06-25