索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]陈柳莹 陆伦根.肝脏病理性血管改建在肝纤维化中的作用[J].国际消化病杂志,2019,03:162-165,169.
点击复制

肝脏病理性血管改建在肝纤维化中的作用(PDF)

《国际消化病杂志》[ISSN:1673-534X/CN:31-1953/R]

期数:
2019年03期
页码:
162-165,169
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
-
作者:
陈柳莹 陆伦根
200080 上海交通大学附属第一人民医院消化科
Author(s):
-
关键词:
肝纤维化 肝窦毛细血管化 肝脏病理性血管改建
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-534X.2019.03.005
文献标识码:
-
摘要:
肝脏病理性血管改建是推动肝纤维化进展的重要因素,与肝纤维化的程度密切相关。肝纤维化过程中肝脏血管的病理性改建主要包括肝窦内皮细胞的毛细血管化,肝脏血管的增生及门-体分流的出现。低氧及低氧诱导因子是促进肝脏血管增生的重要因素,在血管内皮生长因子(VEGF)、血小板衍生生长因子(PDGF)、血管生成素-1(Ang-1)等血管生成促进因子的联合作用下,实现了肝纤维化过程中的血管增生及改建。
Abstract:
-

参考文献/References

1 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review[J]. Comp Hepatol, 2002, 1(1): 1.
2 Fraser R, Dobbs BR, Rogers GW. Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis[J]. Hepatology, 1995, 21(3): 863-874.
3 Xie G, Wang X, Wang L, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats[J]. Gastroenterology, 2012, 142(4): 918-927. e6.
4 Braet F, Spector I, De Zanger R, et al. A novel structure involved in the formation of liver endothelial cell fenestrae revealed by using the actin inhibitor misakinolide[J]. Proc Natl Acad Sci U S A, 1998, 95(23): 13635-13640.
5 Svistounov D, Warren A, McNerney GP, et al. The relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells[J]. PLoS One, 2012, 7(9): e46134.
6 Xie G, Choi SS, Syn WK, et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation[J]. Gut, 2013, 62(2): 299-309.
7 Desroches-Castan A, Tillet E, Ricard N, et al. Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting from hepatic fibrosis[J]. Hepatology, 2019, Apr 9.[Epub ahead of print]
8 Marrone G, Russo L, Rosado E, et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins[J]. J Hepatol, 2013, 58(1): 98-103.
9 Marrone G, Maeso-Diaz R, Garcia-Cardena G, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins[J]. 2015, 64(9): 1434-1443.
10 Xing Y, Zhao T, Gao X, et al. Liver X receptor α is essential for the capillarization of liver sinusoidal endothelial cells in liver injury[J]. Sci Rep, 2016, 6: 21309.
11 Duan JL, Ruan B, Yan XC, et al. Endothelial notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice[J]. Hepatology, 2018, 68(2): 677-690.
12 Liu L, You Z, Yu H, et al. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis[J]. Nat Mater, 2017, 16(12): 1252-1261.
13 Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets[J]. Dig Liver Dis, 2004, 36(4): 231-242.
14 Garcia-Monzon C, Sanchez-Madrid F, Garcia-Buey L, et al. Vascular adhesion molecule expression in viral chronic hepatitis: evidence of neoangiogenesis in portal tracts[J]. Gastroenterology, 1995, 108(1): 231-241.
15 Medina J. Hepatocyte growth factor activates endothelial proangiogenic mechanisms relevant in chronic hepatitis C-associated neoangiogenesis[J]. J Hepatology, 2003, 38(5): 660-667.
16 Messerini L, Novelli L, Comin CE. Microvessel density and clinicopathological characteristics in hepatitis C virus and hepatitis B virus related hepatocellular carcinoma[J]. J Clin Pathol, 2004, 57(8): 867-871.
17 Kitade M, Yoshiji H, Kojima H, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats[J]. Hepatology, 2006, 44(4): 983-991.
18 Ciupinska-Kajor M, Hartleb M, Kajor M, et al. Hepatic angiogenesis and fibrosis are common features in morbidly obese patients[J]. Hepatol Int, 2013, 7(1): 233-240.
19 Paternostro C, David E, Novo E, et al. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases[J]. World J Gastroenterol, 2010, 16(3): 281-288.
20 Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells[J]. Am J Pathol, 2007, 170(6): 1942-1953.
21 Kukla M. Angiogenesis: a phenomenon which aggravates chronic liver disease progression[J]. Hepatol Int, 2013, 7(1): 4-12.
22 Yokomori H, Oda M, Yoshimura K, et al. Overexpression of apelin receptor(APJ/AGTRL1)on hepatic stellate cells and sinusoidal angiogenesis in human cirrhotic liver[J]. J Gastroenterol, 2011, 46(2): 222-231.
23 Principe A, Melgar-Lesmes P, Fernandez-Varo G, et al. The hepatic apelin system: a new therapeutic target for liver disease[J]. Hepatology, 2008, 48(4): 1193-1201.
24 Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells[J]. Hepatology, 2005, 42(6): 1339-1348.
25 Semela D, Das A, Langer D, et al. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function[J]. Gastroenterology, 2008, 135(2): 671-679.
26 Coulon S, Heindryckx F, Geerts A, et al. Angiogenesis in chronic liver disease and its complications[J]. Liver Int, 2011, 31(2): 146-162.
27 Ko HM, Seo KH, Han SJ, et al. Nuclear factor kappaB dependency of platelet-activating factor-induced angiogenesis[J]. Cancer Res, 2002, 62(6): 1809-1814.
28 Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis[J]. Fibrogenesis Tissue Repair, 2008, 1(1): 5.
29 Fernandez M, Vizzutti F, Garcia-Pagan JC, et al. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice[J]. Gastroenterology, 2004, 126(3): 886-894.
30 Fernandez M, Mejias M, Angermayr B, et al. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats[J]. J Hepatol, 2005, 43(1): 98-103.
31 Tugues S, Fernandez-Varo G, Munoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats[J]. Hepatology, 2007, 46(6): 1919-1926.
32 Mejias M, Garcia-Pras E, Tiani C, et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats[J]. Hepatology, 2009, 49(4): 1245-1256.
33 Van Steenkiste C, Ribera J, Geerts A, et al. Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice[J]. Hepatology, 2011, 53(5): 1629-1640.
34 Huang HC, Wang SS, Hsin IF, et al. Cannabinoid receptor 2 agonist ameliorates mesenteric angiogenesis and portosystemic collaterals in cirrhotic rats[J]. Hepatology, 2012, 56(1): 248-258.
35 Reichenbach V, Ros J, Fernandez-Varo G, et al. Prevention of fibrosis progression in CCl4-treated rats: role of the hepatic endocannabinoid and apelin systems[J]. J Pharmacol Exp Ther, 2012, 340(3): 629-637.
36 Sahin H, Borkham-Kamphorst E, Kuppe C, et al. Chemokine CXCL9 attenuates liver fibrosis-associated angiogenesis in mice[J]. Hepatology, 2012, 55(5): 1610-1619.
37 Liu Y, Wang Z, Wang J, et al. A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor-β and vascular endothelial growth factor signalling[J]. Liver Int, 2013, 33(4): 504-515.

备注/Memo

备注/Memo:
作者单位:200080 上海交通大学附属第一人民医院消化科
通信作者:陆伦根,Email: lungenlu1965@163.com
更新日期/Last Update: 2019-06-25