索引超出了数组界限。
1 Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies[J]. World J Hepatol, 2018, 10(1): 1-7.
2Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171.
3Smith A, Baumgartner K, Bositis C. Cirrhosis: Diagnosis and management[J]. Am Fam physician, 2019, 100(12): 759-770.
4Wu A, Feng B, Yu J, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis[J]. Redox biol, 2021, 46: 102131.
5Chen T, Shi Z, Zhao Y, et al. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway[J]. BMC Med, 2022, 20(1): 335.
6Tada Y, Kasai K, Makiuchi N, et al. Roles of macrophages in advanced liver fibrosis, identified using a newly established mouse model of diet-induced non-alcoholic steatohepatitis[J]. Int J Mol Sci, 2022, 23(21): 13251.
7Wijayasiri P, Astbury S, Kaye P, et al. Role of hepatocyte senescence in the activation of hepatic stellate cells and liver fibrosis progression[J]. Cells, 2022, 11(14): 2221.
8Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
9Zhang Y, Li M, Guo Y, et al. The organelle-specific regulations and epigenetic regulators in ferroptosis[J]. Front Pharmacol, 2022, 13:905501.
10 Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin[J]. Adv Nutr, 2017, 8(1): 126-136.
11 Han S, Lin F, Qi Y, et al. HO-1 contributes to luteolin-triggered ferroptosis in clear cell renal cell carcinoma via increasing the labile iron pool and promoting lipid peroxidation[J]. Oxid Med Cell Longev, 2022, 2022: 3846217.
12 Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8): 1425-1428.
13 Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
14 Zhang L, Hou N, Chen B, et al. Post-translational modifications of p53 in ferroptosis: novel pharmacological targets for cancer therapy[J]. Front Pharmacol, 2022, 13: 908772.
15 Panov AV, Dikalov SI. Cardiolipin, perhydroxyl radicals, and lipid peroxidation in mitochondrial dysfunctions and aging[J]. Oxid Med Cell Longev, 2020, 2020: 1323028.
16 Cui S, Simmons G Jr, Vale G, et al. FAF1 blocks ferroptosis by inhibiting peroxidation of polyunsaturated fatty acids[J]. Proc Natl Acad Sci U S A, 2022, 119(17): e2107189119.
17 Lee JY, Nam M, Son HY, et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer[J]. Proc Natl Acad Sci U S A, 2020, 117(51): 32433-32442.
18 Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98.
19 Yu Y, Jiang L, Wang H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739.
20 Song XY, Liu PC, Liu WW, et al. Silibinin inhibits ethanol- or acetaldehyde-induced ferroptosis in liver cell lines[J]. Toxicol In Vitro, 2022, 82: 105388.
21 Ramani K, Mavila N, Abeynayake A, et al. Targeting A-kinase anchoring protein 12 phosphorylation in hepatic stellate cells regulates liver injury and fibrosis in mouse models[J]. Elife, 2022, 11:e78430.
22 Mehta KJ, Coombes JD, Briones-Orta M, et al. Iron enhances hepatic fibrogenesis and activates transforming growth factor-β signaling in murine hepatic stellate cells[J]. Am J Med Sci, 2018, 355(2): 183-190.
23 Chen H, Zhao W, Yan X, et al. Overexpression of hepcidin alleviates steatohepatitis and fibrosis in a diet-induced nonalcoholic steatohepatitis[J]. J Clin Transl Hepatol, 2022, 10(4): 577-588.
24 Cho SS, Yang JH, Lee JH, et al. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis[J]. Free Radic Biol Med, 2022, 193(Pt 2): 620-637.
25 Gao H, Jin Z, Bandyopadhyay G, et al. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis[J]. Cell Metab, 2022, 34(8): 1201-1213. e5.
26 Vogt AS, Arsiwala T, Mohsen M, et al. On iron metabolism and its regulation[J]. Int J Mol Sci, 2021, 22(9): 4591.
27 Wang H, An P, Xie E, et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66(2): 449-465.
28 Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449.
29 Yamada N, Karasawa T, Wakiya T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation:Potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6): 1606-1618.
30 Zhao C, Xiao C, Feng S, et al. Artemisitene alters LPS-induced oxidative stress, inflammation and ferroptosis in liver through Nrf2/HO-1 and NF-κB pathway[J]. Front Pharmacol, 2023, 14: 1177542.
31 Gautheron J, Gores GJ, Rodrigues CMP. Lytic cell death in metabolic liver disease[J]. J Hepatol, 2020, 73(2): 394-408.
32 Li W, Chang N, Li L. Heterogeneity and function of kupffer cells in liver injury[J]. Front Immunol, 2022, 13: 940867.
33 Yang Y, Wang Y, Guo L, et al. Interaction between macrophages and ferroptosis[J]. Cell Death Dis, 2022, 13(4): 355.
34 Zhang Z, Zhang F, Guo X, et al. Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice[J]. Hepatology, 2012, 56(3): 961-971.
35 Handa P, Thomas S, Morgan-Stevenson V, et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol, 2019, 105(5): 1015-1026.
36 Yuan Y, Chen Y, Peng T, et al. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition[J]. Clin Sci (Lond), 2019, 133(15): 1759-1777.
37 Marques L, Negre-Salvayre A, Costa L, et al. Iron gene expression profile in atherogenic Mox macrophages[J]. Biochim Biophys Acta, 2016, 1862(6): 1137-1146.
38 Zhou Y, Que KT, Zhang Z, et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway[J]. Cancer Med, 2018, 7(8): 4012-4022.
39 Huang F, Zhao JL, Wang L, et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages[J]. Front Immunol, 2017, 8: 1327.
40 陈柳莹, 陆伦根. 肝脏病理性血管改建在肝纤维化中的作用[J].国际消化病杂志, 2019, 39(3): 162-165, 169.
41 Zapotoczny B, Szafranska K, Kus E, et al. Tracking fenestrae dynamics in live murine liver sinusoidal Endothelial Cells[J]. Hepatology, 2019, 69(2): 876-888.
42 Hunt NJ, Lockwood GP, Warren A, et al. Manipulating fenestrations in young and old liver sinusoidal endothelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(1): G144-G154.
43 Lim PJ, Duarte TL, Arezes J, et al. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin[J]. Nat Metab, 2019, 1(5): 519-531.
44 Ruart M, Chavarria L, Campreciós G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury[J]. J Hepatol, 2019, 70(3): 458-469.
45 Colucci S, Altamura S, Marques O, et al. Iron-dependent BMP6 regulation in liver sinusoidal endothelial cells is instructed by hepatocyte-derived secretory signals[J]. Hemasphere, 2022, 6(10):e773.
46 Addo L, Tanaka H, Yamamoto M, et al. Hepatic nerve growth factor induced by iron overload triggers defenestration in liver sinusoidal endothelial cells[J]. Biochim Biophys Acta, 2015, 1852(1): 175-183.