索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]郭悦承 陆伦根.短链脂肪酸在非酒精性脂肪性肝病发生发展中作用的研究进展[J].国际消化病杂志,2019,03:145-148.
点击复制

短链脂肪酸在非酒精性脂肪性肝病发生发展中作用的研究进展(PDF)

《国际消化病杂志》[ISSN:1673-534X/CN:31-1953/R]

期数:
2019年03期
页码:
145-148
栏目:
脂肪肝和肝纤维化专题综述
出版日期:
2019-06-25

文章信息/Info

Title:
-
作者:
郭悦承 陆伦根
200080 上海交通大学附属第一人民医院消化科 上海市胰腺疾病重点实验室
Author(s):
-
关键词:
肠道微生物 非酒精性脂肪性肝病 短链脂肪酸 肠道屏障 脂代谢
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-534X.2019.03.001
文献标识码:
-
摘要:
非酒精性脂肪性肝病(NAFLD)是一种常见的、多因素导致的肝病,有进展为非酒精性脂肪性肝炎(NASH)、肝硬化甚至肝细胞癌的风险,其发病机制尚不明确。短链脂肪酸(SCFA)是肠道菌群的重要代谢产物之一。近年来多项研究指出,SCFA在NAFLD的发生发展中发挥了巨大作用,其机制可能与保护肠道屏障、改善葡萄糖和脂代谢、调节免疫应答等途径有关。此文主要探讨SCFA在肠道稳态、代谢、免疫应答以及肠道动力学等方面的研究进展,并阐述其在NAFLD发生发展中的可能作用。
Abstract:
-

参考文献/References

1 Duncan SH, Louis P, Thomson JM, et al. The role of pH in determining the species composition of the human colonic microbiota[J]. Environ Microbiol, 2010, 11(8): 2112-2122.
2 Meng Q, Duan XP, Wang CY, et al. Alisol B 23-acetate protects against non-alcoholic steatohepatitis in mice via farnesoid X receptor activation[J]. Acta Pharmacol Sin, 2017, 38(1): 69-79.
3 Pingitore A, Chambers ES, Hill T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro[J]. Diabetes Obes Metab, 2017, 19(2): 257-265.
4 Jin CJ, Sellmann C, Engstler AJ, et al. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis(NASH)[J]. Br J Nutr, 2015, 114(11): 1745-1755.
5 Michail S, Lin M, Frey MR, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease[J]. FEMS Microbiol Ecol, 2015, 91(2): 1-9.
6 Spencer MD, Hamp TJ, Reid RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency[J]. Gastroenterology, 2011, 140(3): 976-986.
7 Rabot S, Membrez M, Bruneau A, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism[J]. FASEB J, 2010, 24(12): 4948-4959.
8 Le Roy T, Llopis M, Lepage P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794.
9 Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63(3): 764-775.
10 Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3): 141-153.
11 Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology, 2009, 49(6): 1877-1887.
12 Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(2): 222-232.
13 Feng Y, Wang Y, Wang P, et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy[J]. Cell Physiol Biochem, 2018, 49(1): 190-205.
14 Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe, 2015, 17(5): 662-671.
15 Miao W, Wu X, Wang K, et al. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2[J]. Int J Mol Sci, 2016, 17(10). pii: E1696.
16 Zheng L, Kelly CJ, Battista KD, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2[J]. J Immunol, 2017, 199(8): 2976-2984.
17 Fushimi T, Suruga K, Oshima Y, et al. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet[J]. Br J Nutr, 2006, 95(5): 916-924.
18 Weitkunat K, Schumann S, Nickel D, et al. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity[J]. Mol Nutr Food Res, 2016, 60(12): 2611-2621.
19 Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4526.
20 Ohira H, Fujioka Y, Katagiri C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages[J]. J Atheroscler Thromb, 2013, 20(5): 425-442.
21 Ohira H, Tsutsui W, Mamoto R, et al. Butyrate attenuates lipolysis in adipocytes co-cultured with macrophages through non-prostaglandin E2-mediated and prostaglandin E2-mediated pathways[J]. Lipids Health Dis, 2016, 15(1): 213.
22 den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2398-2408.
23 Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20: 159-166.
24 Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504: 446-450.
25 Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455.
26 Luu M, Pautz S, Kohl V, et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes[J]. Nat Commun, 2019, 10(1): 760.
27 Wang X, He G, Peng Y, et al. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway[J]. Sci Rep, 2015, 5: 12676.
28 Park JS, Lee EJ, Lee JC, et al. Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: involvement of NF-κB and ERK signaling pathways[J]. Int Immunopharmacol, 2007, 7(1): 70-77.
29 Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11): 1744-1754.
30 Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proc Natl Acad Sci U S A, 2008, 105(43): 16767-16772.
31 Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?[J]. Diabetes care, 2010, 33(10): 2277-2284.
32 Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol, 2014, 11: 55-67.
33 Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2): 225-235.
34 Sheng L, Jena PK, Hu Y, et al. Hepatic inflammation caused by dysregulated bile acid synthesis is reversible by butyrate supplementation[J]. J Pathol, 2017, 243(4): 431-441.

备注/Memo

备注/Memo:
作者单位: 200080 上海交通大学附属第一人民医院消化科 上海市胰腺疾病重点实验室
通信作者: 陆伦根,Email: lungenlu1965@163.com
更新日期/Last Update: 2019-06-25