|本期目录/Table of Contents|

[1]李青,王博,邱弘毅,等.昼夜节律紊乱对肠道微生态和粪便代谢组学影响的实验研究[J].国际消化病杂志,2022,02:126-133.
 LI Qing,WANG Bo,QIU Hongyi,et al.Experimental study on the influence of circadian rhythm disturbance on intestinal microecology and fecal metabolites[J].International Journal of Digestive Disease,2022,02:126-133.
点击复制

昼夜节律紊乱对肠道微生态和粪便代谢组学影响的实验研究(PDF)

《国际消化病杂志》[ISSN:1673-534X/CN:31-1953/R]

期数:
2022年02期
页码:
126-133
栏目:
论著
出版日期:
2022-04-20

文章信息/Info

Title:
Experimental study on the influence of circadian rhythm disturbance on intestinal microecology and fecal metabolites
作者:
李青王博邱弘毅颜秀娟程莉王倩倩陈胜良
200001 上海交通大学医学院附属仁济医院消化科
Author(s):
LI Qing WANG Bo QIU Hongyi YAN Xiujuan CHENG LiWANG Qianqian CHEN Shengliang.
Department of Gastroenterology and Hepatology, Renji Hospital,School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
关键词:
昼夜节律肠道微生态代谢物消化吸收脑- 肠轴
Keywords:
Circadian rhythm Intestinal microecology Metabolites Digestion Absorption Braingutaxis
分类号:
-
DOI:
10.3969/j.issn.1673-534X.2022.02.012
文献标识码:
-
摘要:
目的 探究昼夜节律紊乱对肠道微生态和粪便代谢物特征的影响。 方法 选取12 只健康C57BL/6J 小鼠(雄性,6~8 周龄,18~25 g)作为研究对 象,随机分为2 组,每组6 只。采用转换饲养环境光照节律的方法模拟昼夜节律 变化,建立昼夜节律紊乱小鼠模型。4 个月后,收集小鼠粪便和空肠内容物,采用 16S rRNA 测序法分析小鼠空肠和结肠内菌群的变化,采用靶向代谢组学分析粪便 样品中代谢组学的变化。结果 与昼夜节律正常组(Con 组,n=6)比较,昼夜节 律紊乱组(JL 组,n=5)小鼠结肠菌群的丰度和多样性均降低,其中Bacteroidota 门细菌丰度显著降低,Firmicutes 门和 Actinobacteria 门细菌丰度均增高。粪便代谢 组学结果显示,与Con 组比较,JL 组小鼠粪便中氨基酸水平显著降低(14.11% 比 30.04%,P<0.01);两组小鼠粪便中碳水化合物和短链脂肪酸水平的差异均无统计 学意义(P 均>0.05)。结论 昼夜节律改变能够引起小鼠肠道微生态及粪便代谢物 的变化。
Abstract:
Objective This study aims to explore the influence of circadian rhythm disorder on intestinal microecology changes and fecal metabolites characteristics. Methods Twelve healthy C57BL/6J mice (male, 6 to 8 weeks old, 18 to 25 g) were selected and randomly assigned to two groups with 6 mice in each group. The change of circadian rhythm was simulated by changing the light rhythm of the rearing environment, and the mouse model of circadian rhythm disorder was established. After 4 months, the stool samples and jejunal contents were collected. The jejunal contents and microbiota of fecal samples were analyzed by 16S ribosomal RNA sequencing. Targeted metabolomics was used to explore the differences of fecal metabolites between the two groups. Results Compared with the normal circadian rhythm group (Con group, n=6), the abundance and diversity of colonic flora of the mice in the circadian rhythm disorder group (JL group, n=5) are decreased, and the abundance of Bacteroidota is significantly decreased. The bacterial abundance of Firmicutes and Actinobacteria increased. Fecal metabolomics results show that compared with the Con group, the levels of amino acids in the feces of the mice in the JL group are significantly lower (14.11% versus 30.04%, P<0.01). There is no difference in the levels of carbohydrates and short-chain fatty acids in the feces of the two groups of mice. Conclusion Disturbances in the circadian rhythm can indeed trigger changes in the intestinal microecology and fecal metabolites in mice.

参考文献/References

1 Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease[J]. Genome Med, 2019, 11(1): 82.
2 Nojkov B, Rubenstein JH, Chey WD, et al. The impact of rotating shift work on the prevalence of irritable bowel syndrome in nurses[J]. Am J Gastroenterol, 2010, 105(4): 842-847.
3 Wells MM, Roth L, Chande N. Sleep disruption secondary to overnight call shifts is associated with irritable bowel syndrome in residents: a cross-sectional study[J]. Am J Gastroenterol, 2012, 107(8): 1151-1156.
4 Papantoniou K, Devore EE, Massa J, et al. Rotating night shift work and colorectal cancer risk in the nurses' health studies[J]. Int J Cancer, 2018, 143(11): 2709-2717.
5 Papantoniou K, Casta?o-Vinyals G, Espinosa A, et al. Shift work and colorectal cancer risk in the MCC-Spain case-control study[J]. Scand J Work Environ Health, 2017, 43(3): 250-259.
6 Gyarmati G, Turner MC, Casta?o-Vinyals G, et al. Night shift work and stomach cancer risk in the MCC-Spain study[J]. Occup Environ Med, 2016, 73(8): 520-527.
7 Teichman EM, O'Riordan KJ, Gahan CGM, et al. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis[J]. Cell Metab, 2020, 31(3): 448-471.
8 Duboc H, Coffin B, Siproudhis L. Disruption of circadian rhythms and gut motility: an overview of underlying mechanisms and associated pathologies[J]. J Clin Gastroenterol, 2020, 54(5): 405-414.
9 Hoogerwerf WA. Role of clock genes in gastrointestinal motility[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299(3): G549-G555.
10 Zheng D, Ratiner K, Elinav E. Circadian influences of diet on the microbiome and immunity[J]. Trends Immunol, 2020, 41(6): 512-530.
11 Tuganbaev T, Mor U, Bashiardes S, et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis[J]. Cell, 2020, 182(6): 1441-1459. e21.
12 Tognini P, Thaiss CA, Elinav E, et al. Circadian coordination of antimicrobial responses[J]. Cell Host Microbe, 2017, 22(2): 185-192.
13 Curtis AM, Bellet MM, Sassone-Corsi P, et al. Circadian clock proteins and immunity[J]. Immunity, 2014, 40(2): 178-186.
14 Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system[J]. Nat Rev Immunol, 2013, 13(3): 190-198.
15 Early JO, Menon D, Wyse CA, et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proc Natl Acad Sci U S A, 2018, 115(36): E8460-E8468.
16 Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis[J]. Cell, 2014, 159(3): 514-529.
17 Zhao L, Ni Y, Su M, et al. High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization[J]. Anal Chem, 2017, 89(10): 5565-5577.
18 Sundin OH, Mendoza-Ladd A, Zeng M, et al. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon[J]. BMC Microbiol, 2017, 17(1): 160.
19 Pimentel M, Saad RJ, Long MD, et al. ACG clinical guideline: small intestinal bacterial overgrowth[J]. Am J Gastroenterol, 2020, 115(2): 165-178.
20 Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/ Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?[J]. Nutrients, 2020, 12(5): 1474.
21 Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice[J]. Sci Rep, 2018, 8(1): 6670.
22 Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23(6): 716-724.
23 Islam J, Sato S, Watanabe K, et al. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice[J]. J Nutr Biochem, 2017, 42: 43-50.
24 Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385.
25 Gooley JJ. Circadian regulation of lipid metabolism[J]. Proc Nutr Soc, 2016, 75(4): 440-450.
26 Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time[J]. Trends Endocrinol Metab, 2012, 23(1): 1-8.

备注/Memo

备注/Memo:
通信作者:陈胜良,Email: slchenmd@homail.com
更新日期/Last Update: 2022-04-20